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In this paper we study dualities for a class of one-dimensional probabilistic
cellular automata with finite range interactions by using a sequence of extended
cellular automata.
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1. INTRODUCTION

The models considered in this paper are probabilistic cellular automata
with finite range interactions on Z, which is the set of integers. Before we
study the finite range case, for better understanding of readers, we review
and explain the pairwise interaction case based on the paper written by
Katori et al. (1) Our main result (Theorem 2) is an extention of their result
(Theorem 1) for a class of models with finite range interactions which is
called Class SB (N) in the present paper.
The one-dimensional probabilistic cellular automata with pairwise

interactions was introduced by Domany and Kinzel (2) and Kinzel. (3) So we
call this class the Domany–Kinzel model. This model is a two parameter
family of discrete time Markov processes whose states are subsets of Z. Let
tAn … Z be the state of the process with parameters (p1 , p2) ¥ [0, 1]2 at time
n which starts from A … 2Z. Its evolution satisfies the following.

(i) P(x ¥ tAn+1 | t
A
n )=f(|t

A
n 5 {x−1, x+1}|),

(ii) given tAn , the events {x ¥ t
A
n+1} are independent, where

f(0)=0, f(1)=p1 , and f(2)=p2



where |A| is the number of elements in A. If we write t(x, n)=1 for x ¥ tAn
and t(x, n)=0 otherwise, each realization of the process is identified with
a configuration t ¥ {0, 1}S with S={s=(x, n) ¥ Z×Z+ : x+n=even},
where Z+={0, 1, 2,...}.
As special cases the Domany–Kinzel model is equivalent to the

oriented bond percolation model (p1=p, p2=2p−p2) and the oriented site
percolation model (p1=p2=p) on a square lattice. The two-dimensional
mixed site-bond oriented percolation model with probabilities ps of a site
being open and pb of a bond being open corresponds to the case of
p1=ps pb and p2=ps[1−(1−pb)2]. The model with (p1 , p2)=(1, 0)
becomes Wolfram’s (4, 5) rule 90. For more detailed information, see pp.
90–98 in Durrett. (6)

A key observation in this paper is that any two parameters p1 , p2 ¥
[0, 1] can be expressed as

p1=ps pb , p2=ps[1−(1−pb)2] (1.1)

where ps , pb ¥ R (the set of real numbers). From these we have

ps=
p21

2p1−p2
, pb=2−

p2
p1

(1.2)

where 2p1 ] p2 and p1 ] 0. The expression (1.1) is equivalent to that of the
mixed site-bond oriented percolation for ps , pb ¥ [0, 1]. However in the
Domany–Kinzel model, ps , pb ¥ [0, 1] is not assumed. In this paper (1.1)
will be called Expression SB.
Next a new process gn is introduced as follows. To do so we let

pg=max{p1 , p2}

For simplicity, from now on we suppose that 2p1 ] p2 and p1 ] 0, when we
consider the Domany–Kinzel model. A new process defined below is called
pg-DKdual. We can see the thinning-relationship by coupling the Domany–
Kinzel model and pg-DKdual. We split both the Domany–Kinzel model
and the pg-DKdual into two phases, and we will allow the first phase to
occur at times n+(1/2) where n is an integer.

1. Let m be the distribution of the pg-DKdual at time 0.
2. At time n=1/2, it undergoes a pg-thinning. In general, for

p ¥ [0, 1], the p-thinning of a set A … Z is the random subset of A obtained
by independently removing each element of A with probability 1−p.
3. Start the Domany–Kinzel model at time n=0 with the same con-

figuration as the pg-DKmodel at time n=1/2.
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4. Couple the processes together until time n0−(1/2) for the Domany–
Kinzel, n0 for the pg-DKmodel. This can be done because the transitions
for the Domany–Kinzel model are the same as those for the pg-DKmodel
lagged by time unit 1/2.

5. Perform a pg-thinning for the Domany–Kinzel model at time n0.

The distribution of the Domany–Kinzel model started and ended as a
pg-thinning of the pg-DK dual.
Here we consider dualities for the Domany–Kinzel model tAn and the

pg-DKdual g
A
n starting from A. In general, duality is a very useful tech-

nique in the study of probabilistic cellular automata. Because problems in
uncountable state space (typically configurations of zeros and ones live
in Z) can be reformulated as problems in countable state space (typically
finite subsets of Z). See Chapter 5 of Durrett (6) for some applications of
duality. The following theorem was shown by Katori et al. (1) Remark that
they assumed p1 \ p2 in their paper, so pg=p1.

Theorem 1. For any A, B with |A| <. or |B| <., we have

(1) E(a |t
A
n 5 B|)=E(a |t

B
n 5 A|) for any n \ 0, if a=1−(2p1−p2)/p

2
1,

(2) E(b |t
A
n 5 B|)=E(b |g

B
n 5 A|) for any n \ 0, if b=1−(2p1−p2) pg/p

2
1,

(3) E(c |g
A
n 5 B|)=E(c |g

B
n 5 A|) for any n \ 0, if c=1−(2p1−p2) p

2
g/p

2
1.

We should remark that if we use ps in Eq. (1.2) then

a=1−
1
ps
, b=1−

pg
ps
, c=1−

p2g
ps

(1.3)

When p2=1−(1−p1)2 (oriented bond percolation case) in part (1), we
have a=0. So in this case, we obtain

P(tAn 5 B ]”)=P(tBn 5 A ]”)

for any n \ 0. This result is known as coalescing self-duality for oriented
bond percolation. Moreover, continuous time version of part (1) in
this theorem has been studied by Sudbury and Lloyd, (7, 8) Bandt, (9) and
Sudbury. (10)

From now on we turn to a general finite range case. To describe the
dynamics of probabilistic cellular automaton with finite range interactions,
we introduce an interaction neighborhoodN={−L, −(L−1),..., L−1, L}
and a transition function F: {0, 1}N Q [0, 1]. In this setting, its evolution
is specified by
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(i) P(x ¥ tAn+1 | t
A
n )=F(t

A
n (x−L),..., t

A
n (x+L)),

(ii) given tAn , the events {x ¥ t
A
n+1} are independent.

Here we let F(i1 , i2 ,..., iN)=pi1 i2 · · · iN ¥ [0, 1] for any ik ¥ {0, 1} (k=1,
2,..., N) with N=2L+1. We call this model PCA for short.
As in the case of the Domany–Kinzel model, we introduce a new

process pg-PCA gn with respect to the PCA tn, where pg=max{pi1 i2 · · · iN :
i1 , i2 ,..., iN ¥ {0, 1}}. Furthermore, we impose the following Expression SB,
which is a finite range version of the Domany–Kinzel model (see Eq. (1.1)),
on transition probabilities pi1 i2 · · · iN of the PCA:

p0000...0000=0,

p0000...0001=p1000...0000=ps pL ,

p0000...0010=p0100...0000=ps pL−1 ,

p0000...0100=p0010...0000=ps pL−2 ,

p0000...0011=p1100...0000=ps[1−(1−pL−1)(1−pL)],

p0000...0101=p1010...0000=ps[1−(1−pL−2)(1−pL)],

p0000...0111=p1110...0000=ps[1−(1−pL−2)(1−pL−1)(1−pL)],

x

p1111...1111=ps 51−(1−p0) D
L

k=1
(1−pk)26

where ps ¥ R0{0} and pk ¥ R (k=0, 1,..., L) satisfy pi1 i2 · · · iN \ 0 for any
ij ¥ {0, 1} (j=1, 2,..., N). This expression is necessary for the PCA to be
self-dual. We call a class of models whose transition probabilities given by
the above Expression SB Class SB (N). The Domany–Kinzel model is
equivalent to Class SB (3) with p0=0, so it is essentially two-neighbor
system. Then we obtain the next our main result for finite range case:

Theorem 2. We consider Class SB(N) with transition probabilities
pi1 i2 · · · iN . Then, for any A, B with |A| <. or |B| <., we have

(1) E(a |t
A
n 5 B|)=E(a |t

B
n 5 A|) for any n \ 0, if a=1−1/ps,

(2) E(b |t
A
n 5 B|)=E(b |g

B
n 5 A|) for any n \ 0, if b=1−pg/ps,

(3) E(c |g
A
n 5 B|)=E(c |g

B
n 5 A|) for any n \ 0, if c=1−p2g/ps,

where pg=max{pi1 i2 · · · iN : i1 , i2 ,..., iN ¥ {0, 1}}.
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Noting the expression (1.3), it is clear that Theorem 2 is an extension
of Theorem 1.

2. PROOF OF THEOREM 2

In this section, we prove Theorem 2. However the proof is the essen-
tially same as the proof of Theorem 1 for the Domany–Kinzel model. So
we show the theorem in the case of the Domany–Kinzel model, that is,
Theorem 1. As we mentioned just before Theorem 1, Theorem 1 was
proved by Katori et al. (1) However their proofs of (2) and (3) can not be
extended to our finite range case. On the other hand, our proofs here
are easy to extend to a general case, moreover they clarify a reason why
duality parameters a, b and c in this theorem satisfy a simple relation
p2g(1−a)=pg(1−b)=1− c by introducing a sequence of extended
Domany–Kinzel models t (k), An for k=0, 1, 2,..., where k=0 is equivalent
to the original Domany–Kinzel model. We use t (k−1), An in the proof of part
(k) for each k=1, 2, 3. Furthermore, an interesting thing is that param-
eters (p (k)1 , p

(k)
2 ) (=(p1/p

k
g, p2/p

k
g)) of t

(k), A
n for k \ 2 do not belong to

[0, 1]2 unless pg=1. However the fact does not matter in our proof of part
(3), since it is technically useful for our computation to consider such an
artificial process.
To introduce the class of models t (k), An (k=0, 1, 2,...) is an essential

new part of this paper. For the convenience of readers, we present one of
their three proofs of part (1) in our setting corresponding to our proofs
of parts (2) and (3), since Katori et al. (1) gave three different proofs as for
part (1).

Proof of (1). By the Markov property of tn , it is enough to show

E(a |t
A
1 5 B|)=E(a |t

B
1 5 A|)

Let “A=(A−1)g (A+1) andA1=(A−1) 5 (A+1)whereA+m={x+m :
x ¥ A} and Ag B=(A0B) 2 (B0A). First we see that

E(a |t
A
1 5 B|)= C

|“A 5 B|

l=0

1 |“A 5 B|
l
2 a lp l1(1−p1) |“A 5 B|−l

× C
|A15 B|

k=0

1 |A15 B|
k
2 akpk2(1−p2) |A15 B|−k

=(ap1+1−p1) |“A 5 B|(ap2+1−p2) |A
15 B|
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Similarly we have

E(a |t
B
1 5 A|)=(ap1+1−p1) |“B 5 A| (ap2+1−p2) |B

1 5 A|

where “B=(B−1)g (B+1) and B1=(B−1) 5 (B+1). Let a=(ai : i ¥ Z)
and b=(bi : i ¥ Z) with ai , bi ¥ {0, 1} for any i, where, if 2i ¥ A (resp. ¨ A),
then ai=1 (resp.=0) and if 2i+1 ¥ B (resp. ¨ B), then bi=1 (resp.=0).
A little thought reveals

|“A 5 B|=C
i
bi(ai+ai+1−2aiai+1),

|“B 5 A|=C
i
ai+1(bi+bi+1−2bibi+1),

|A15 B|=C
i
biaiai+1 , |B1 5 A|=C

i
ai+1bibi+1

Therefore if we letM=M(a, b)=; i (ai+1bibi+1−aiai+1bi), then we have

|“A 5 B|=|“B 5 A|+2M, |A15 B|=|B1 5 A|−M (2.1)

Here we assume that ap2+1−p2=(ap1+1−p1)2, i.e., a=1−(2p1−p2)/p
2
1.

Combining (2.1) with the above assumption gives

E(a |t
A
1 5 B|)=(ap1+1−p1) |“A 5 B| (ap1+1−p1)2 |A

15 B|

=(ap1+1−p1) |“A 5 B|+2 |A15 B|

=(ap1+1−p1) |“B 5 A|+2 |B1 5 A|

=E(a |t
B
1 5 A|)

So we obtain the desired conclusion.

Proof of (2). First we consider an extended Domany–Kinzel model
t (k), An starting from A with parameters (p (k)1 , p

(k)
2 )=(p1/p

k
g, p2/p

k
g) for any

k ¥ {0, 1,...}. By using part (1), we have

E((a (k)) |t
(k), A
1 5 B|)=E((a (k)) |t

(k), B
1 5 A|) (2.2)

where

a (k)=1−
2p (k)1 −p

(k)
2

(p (k)1 )
2 =1−

2p1−p2
p21

×pkg=1−
pkg
ps

(2.3)
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since ps=p
2
1/(2p1−p2). In the general finite range case, we consider

extended PCA with transition probabilities pi1 i2 · · · iN/p
k
g in the proof of part

(k+1) for k=1, 2.
From the above Eqs. (2.2) and (2.3) with k=1, we see that

E((a (1)) |t
A
1 5 B|)=E((a (1)) |t

(1), A
1/2 5 Bpg |)

= C
D … B
p |D|g (1−pg)

|B|− |D| E((a (1)) |t
(1), A
1/2 5 D|)

= C
D … B
p |D|g (1−pg)

|B|− |D| E((a (1)) |t
(1), D
1/2 5 A|)

=E((a (1)) |t
(1), Bpg1/2 5 A|)

=E((a (1)) |g
B
1 5 A|)

where Bp is a p-thinning for B, that is, if x ¥ B, then x ¥ Bp with probability
p and x ¨ Bp with probability 1−p. Noting that

a (1)=b=1−
(2p1−p2) pg

p21
=1−

pg
ps

the proof is completed.

Proof of (3). As in the case of part (2), by using Eqs. (2.2) and (2.3)
with k=2, we have

E((a (2)) |g
A
1 5 B|)=E((a (2)) |t

(1), Apg1/2 5 B|)

=E((a (2)) |t
(2), Apg1/4 5 Bpg |)

= C
D … B
p |D|g (1−pg)

|B|− |D| E((a (1)) |t
(1), A
1/2 5 D|)

= C
D … A

C
F … B
p |D|g (1−pg)

|A|− |D| p |F|g (1−pg)
|B|− |F| E((a (2)) |t

(2), D
1/4 5 F|)

= C
D … A

C
F … B
p |D|g (1−pg)

|A|− |D| p |F|g (1−pg)
|B|− |F| E((a (2)) |t

(2), F
1/4 5 D|)

=E((a (2)) |g
B
1 5 A|)

Then the proof is completed, since

a (2)=c=1−
(2p1−p2) p

2
g

p21
=1−

p2g
ps
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